
F’ D—A032 921 RENSSELAER POLYTECHNIC INST TROt N V COMPUTER RESEAR——ETC F/G 12/1
A PARAMETRIC ALGORITHM FOR DRAWING PICTURES OF SOLID OBJECTS BO——ETC (U)
MAR 76 U 1 LEVIN AF—AFOSR—2937—76

UNCLASSIFIED CRL—46 AF O 5R— T R—76—j  161 NL

n i  1

I

_ _

_  

_ _ _ _ _

U
ii 

_

~I 
END

DATE

- .





-‘I
,

WiI~ ~~~IS3

Iit~ ~~chIa ~

1]

I
• ‘ ~~~~~~~~~~ cou~s .

•
~~~~~ 

- 

~~.cu*t ,/ .) —

( /
~~~~~~~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- PARAMETRIC ~~GORIT~ 4 FOR DRAWING
/ PICTURES OF SOLID QBJECTS ~OtJNDED
/ ~~ BY SUADRIC SUR FACES .

- . .

M.S . E E.

~ar~~ ~~76

ii -

__ 

-

~~~~~~~~~~~
_ 

(~~~~~~~~~~~[7
Prepared for

Directorate of Mat hematical and Info~~ ation Sciences
Air Force Office of Scientific Research

Air Force Systems Ccm~and , USAF D D C
Grant Number AFOSH 76—2937

D E C 6 1 9 7 6

b Uli i~J
D

Computer Research Laborat ory
Electrical and Systems Engineering Department

Rensselaer Polytechnic Inst itute
TROY , NEW YORK 12 181

DISTRIBUT ION STATEMENT A

/ ~ 
Approve d fox public release;

Distribution Unlimited 
#~~

‘

_______ -• —----~~~~~~.



ii

ABSTRACT

An algorithm is described for generating two—dimensional, visible—

line projections of three—dimensional obJects that are bounded by

patches of quadric surfaces.

The main task of the algorithm is the calculation of intersections

between quadric surfaces. A parameterization scheme is used. Each

quadric—surface intersection curve (QSIC ) is represented as a set of

coefficients and parameter limits. Each value of the parameter repre-

sents at most two points , and these may easily be distinguished. This

scheme can find the coordinates c~f points of even quartic (fourth—order )

intersection curves, using equations of no more than second order.

Methods of parameterization for each type of QSIC are discussed ,

as well as the problems of surface bounding and hidden—surface removal.
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I. INTRODUCTION

1.1 General

This report describes an algorithm for the computer generation of

orthographic as well as perspective projections of three—dimensioral

objects whose surfaces are made up of se~~ents of quadric surfaces, also

known as quadric patches.

There are now many algorithms for generating pictures of solid

objects whose surfaces consist of planar polygons. A polygon is a seg-

ment of a first—order surface (plane) bounded by other first—order

surfaces.

The Braid algorithm [Braid 1975] extends this to allow also cylin-

ders and parts of cylinders. Cylinders are quadric surfaces.

This paper is based on the Woon algorithm [Woon 1970 and Woon—

Freeman 1971], which processes second—order (quadric) surfaces bounded

by second—order surfaces . Quadric surfaces include such objects as

spheres , cylinders , cone s , ellipsoids and hyperbolic paraboloids . They

are not too complex mathematically.

An important advantage of using quadric patches is that many

objects (especially man—made ones) can be more precisely modelled by a

small number of quadric patches than by a large set of small polygons.

Another advantage is that shaded pictures can be made with better

control over such effects as mach banding and specular reflect ion

[Phong 1975].
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Previous quadric patch algorithms , such as CMahl 1972 ) and

[Weiss 1966], as well as the Woon algor ithm , become laborious when

solving for the intersection of two quadric surfaces. This is a fourth—

order rroblem , and there is no easy method for finding the roots of a

fcurth—order equation, or even mer ely determ ining whether there are any

real roots.

The algorithm presented here reduces each fourth—order problem int o

a second—order problem . The algorithm uses a parametric representation .

1-rery point on the intersection of two quadric surfaces is determined

uniquely by a numerical rarameter and, in many ( but not all ) cases , by

a Boolean sign ~arameter . Since the fourth—order quadric surface inter-

section curves (QS1Cs) can be represented parametrically , the computer

memory need only store about a score of numbers to represent a QSIC,

rather than storing some lengthy point—by—point description for each QSIC.

1.2 The Wocn Algorithm

Sinc e the Wocn algorithm is not well known , and since it forms a

basis of this algorithm , the Wcon algorithm will be presented first.

For each object , the input data for the Woon algorithm consists of

the surface equations, surface bounds , surface intersections , and

vertices. Once an object is specified , the user may ask for different

views of the object , representing different locations of the vantage

point. Pictures may be generated in either orthographic or perspective

projection , and with the hidden lines displayed , dashed , or suppressed . 
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For each surface the user must specify the following :

a) The e~uation of the surface. This is expressed In terms of the ten

coefficients of the equation :

q (x ,:r ,z)  = q x 2 + q + q ~2 + ~ + yz
1 2 3 5

+ q z x + q x + q y + o z + c = O  ( i)
6 8 9 0

The quadric surface divides the three—dimensional space into two

open regions: the exterior, in which q(x,y,z)>O; and the interior, in

which q(x ,y,z)<0. On the surface it3eif , q(x ,y,z~~O.

b) The bounds of the surface. When using the Woon algorithm , one is

normally interested in only one connected se~~ent of each surface. This

surface se~~ent (the “quadric patch”) is defined as the locus of points

on the surface satisfying a certain Boolean condition , which is specified

for each surface.

Each bound consists of another quadric surface , and a polarity

~r —). If the polarity is positive (+), the bound is satisfied (true)

only for ~oints in the exterior of the bounding surface. If the polarity

is negat iv e C — ) ,  the bound is satisfied only for points in the interior

of the bounding surface.

Each set of bounds consists of one or more bounds. The set of

bounds is satisfied if and only if all bounds in the set are satisfied.

Each patch has one or more sets of bounds . The patch is the locus of all

pothts on the surface satisfying at least one set of bounds.

c) The intersection cf the surface patch with other surface patches.

Woon distinguishes between planar surface irtteresect~ons which lie in a

plane, and non—planar intersections which do not. He also distinguishes

between protrusive and recessive intersections . 

. . .
~~~~



In addition to the above Information , needed for each surface and

each surface intersection , the user must also specify all real vertices.

These are points where three or more intersection curves meet.

Quadric surfaces have the property, when viewed from certain view-

points , of “folding in back of themselves”, such that part of the

quadrie surface hides another part. The curve at which this happens,

the locus of points of tangency of rays from the vantage point to the

surf ace , is called a “limb”. (Astronomers use this term for the visual

edge of a celestial body.)

The drawing produced by the Woon algorithm consists of edges.

There are two types: real edges, which are portions of the intersections

of quadric surfaces; virtual edges , which are portions of limbs.

Woon used a variation of the Loutrel algorithm [Loutrel 1970] to

determine whether or not points are visible. This requires that the

quadric patches be broken up into sections called faces. A patch which

folds in back of itself is divided into two or more faces by the limb.

A face is classified as a front face or a back face, depending

upon its orientation with respect to a viewer . Only front faces can be

visible. The orientation of the faces forming an edge, as well as the

protrusiveness or recessiveness of the edge, help determine whether the

edge is potentially visible .

The computation of pictures is divided into two parts. First , for

each object, the object—dependent quantities are computed . These

include real edges, real vertices, and the rartial classification of

edges.

_ _  _ _ _ _  _ _
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Then , for each view of the ob~ eot , the virtual edges and virtual

vertices (intersections of virtual edges and real edges) are computed ,

and finally the visible portions ~f each edge are found. To generate

the data for drawing the edges, the object must be rotated about three

angles : azimuth ~~) ,  elevation (0), and twist (~Y). For perspective

drawings, the distance from the origin to the viewpoint CD) and the

distance from the viewpoint to the picture plane (d) must be considered .

Woon suggests two methods for calculating points on a quadric sur—

face intersection curve (QSIC). If the QSI~ is planar it will be a

conic section , and will be relatively easy to handle mathematically.

f the QSIC is not planar, then the curve may be computed as a series

of points , each within a specified distance from its neighbors. The

term “vector” is used for the directed line se~~ent from one of these

~oints to the next .

ach vector has a dominant direction , either ±x , ±y, or ±z. For

tne first vector in a curie, a guess is made as to its dominant direc-

tion , and , if it takes the curie cut—of—bounds for its surfaces, then it

is re~jected and another direction is selected . For subsequent vectors ,

a strong hint as to the dominant direction is provided by the direction

of the last vector . Ne~~on ’s method is then used to obtain the best

approximation to the actual direction .

Woon discusses a method of determining whether an intersection is

planar or not. This method is discussed and expanded upon later in this

paper.

The Lou-trel algorithm [Loutrel 1970] is used by Woon to determine

whether or not an edge or point is visi’L7.e. Each point on an edge has

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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an order of invisibility, which is the number of front—faces between i t

and the vantage point . The order of invisibility changes whenever the

line from the point to the vantage point intersects an edge of the hid-

ing surface.

Loutrel ’s original algorithm dealt only with polygonal faces. All

edges were straight—line se~ nents; computing the intersecting points of

edge projections was exceedingly simple. This is not the case for the

Pro ,~ections of edges of quadric patches . These edges may be as high as

fourth—order curves. Wocn specifies a very complicated algorithm for

determining these intersect ion points , as well as an algorithm for

proPagatIng the order of invisibility from edge to edge. None of this

will be used in this report .

1.3 ~CADR_~~

Woon wrote a program called QUADRAW which implements a variation of

his algor i thm .  For each object , QUADPAW requires information on scaling ,

vector erigth, and, tolerances.

For each surface, ,UA RAW requires the following :

(l~ The ecuatio-r. of the surface. (There are also some “auxiliary sur-

faces ’ which are not part of the object , ‘out bound other surfaces.)

(2) The bounds of the surface.

For each surface intersection , it requires :

(1) The two intersecting surfaces.

(2) The type (recessive or obtrusive).

(3) The planarity of the intersecting surfaces and of the surface

intersection.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~
—— -
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(~ ) If neither surface is planar , but the intersection is , the equa-

tion of the plane.

(5) Specification of each real vertex ,

~T;~D9,AW computes all curves in a piece—wise linear fa~hion. Each

~SiC is represented in memory by a series of small vectors. This

approach requires use of a computer with a large primary memory .

~IJADRAW does not use Woon ’s variation of the Loutrel algorithm to

its fu~~est exter~t. it does use classification of edges to determine

which edges might be visible , b~t then uses a brute—force method to

con~ute edge visibility . This brute—force method works nicely , and is

used here , with some modification .

As each view is processed , the maxima and minima in the view—plane

are computed for each surface. For each potentially visible edge,

visibility is computed one point at a time . Each point is checked

against each face whose extrerna include the coordinates of the point .

:f at least one face is found which hides the point , then the point is

invisible .

• The testing to see whether a face hides a point on the edge (test

point ) proceeds as follows:

The line of sight is comtuted from the vantage rcint to the test

point . The equation of the surface is reduced by considering only points

along the line of sight . This results in a second—order equation is most

cases, with first—order equations sometimes occurring . If the solution

of the equation yields two roots, one corresponds to a point on a back

face and may be discarded . If the remaining point is within bounds , then

it hi-des the test point , and no further test is needed for that point . 
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If there is no surface hiding the test point , then it is visible.

The method s~~~gested ater on in thi s report is a ref inement of

this me thod .

_ _
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II. THE QUADRATIC FORM

The quadratic surface , as represented by eq. (1) is a quadratic

form [Woon 1970 , Dresden 1930 , Newman— Sproull 1973]. It may be repre—

sented in vector—matrix form, as follows :

Suppose the location of a point in 3—space is represented by the

vector: = (x y z 1). Eq. (i) then may be represented as follows:

q(x,y,z) = q( ~~) = (x y z l ) ’  q 1/~q 12q ‘/2q T x

q 1/2 q ~/2 q
2 5 8 (2)

/2 q ‘/2 q q ~/2 q z
6 5 3 9

q q ‘/z q q 1
7 8 9 0 -

- _
or , for short ,

-.. -
~ m -q ( x )  = x ~, x ( 3 )

where -~~ is th-~ d x ~ matrix in equation (2). ~ is 
called, the

discriniinant of the quadric surface. Notice that ~ is s~ nmetric and

that , for any real non—zero scalar ~~ , ~Q is equivalent to Q, since they

describe the same surface. In this report the same s noboi will on

-occasion be used for both a quadric surface as well as its discriminant.

An alternate form which will also be used is the following :

A D  F

= 
D B E H (L)
F E  C J

G H J  K

such that

q(x ,y,:) = Ax 2 + By2 + Cc 2 + 2Dxy + 2Eyz + 2 Fzx

+ 2Gx + 2Hy + 2Jz+K 0 (5)

L ~~~~~~~~~~~~~~~~~~~~~~ . - -~~~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - • ~~~~ . -  ~~• •~~~~~~



— 10 —

The upp er—left  3 x 3 principal sub—matrix of the discriminant con-

tains all the second—order terms. This will be called the “sub—

disoriminant ”.

i2q5 rA D F

= I 1
—’2 °i  q ~/~q 1D B E (6)

L 2 5 I
L F E C

I /2q  /2q q
L 6 5 3

The sub—discriminant will always be represented by the subscript u.

The rank of the discriminarit and the sub—discriminant are helpful

in classifying quadric surfaces. These are invariant under the trans—

formatico described below. The rank of the discriminant is invariant under

any ncnsin~~ilar transformation , and. that of the sub—discriminant is invariant

under any transformation in which the upper—left 3 x 3 sub—matrix is

noozingular .

2.1 ‘ ransfornations of the ~iscriminant

n setting un the description of an object , the untransformed space

- • 
w!T~ be the u— ’r—w spac e , and the transformed space will be the x—y—z

• s~ ace. The transfc-rmaticn matrices will be F and ~~
‘
, each being the

inverse of the other.

First let us consider the tranfcrmaticr. x = uF, where = (x y z 1)

and = Cu v w 1), let

-
4’ 4’ 4’
£ 4ux uy liZ

- f 0

:~ :~ ~
: ‘:7)

- - •~~~~~~~~~ - • - ~~~ - ~~~~~~~~~~~~~~~~~~ ‘~~~~~
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where F is a congruence transformation . The sub—discriminant , F , is

an orthogonal transformation. If F is orthonormal , then the determin-

ants of both F and F are unity.

Assume that ~ = F 1. ? is the transpose of F if they are ortho—

normal. The lover—right element of 4F (the constant term) is unit-,.

Suppose the equation for the quadric surface P is:
4.

u P u = 0 in untransformed space , and (Ba)

~~x ~ x = 0 in transformed space. (Bb )

Using the transformation = ~F on equation (B’b), we have:

T~~Tu F~~ F u . Comparing this with equation (Ba), we have

P = F ? F T (9)

By pre- and post—multiplication , we have:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (10)

It is possible to break down the transformation into two parts:

rotation and translation. They may be applied repeatedly in any order.

The rotation matrix is:

f f f 0ux uy uz
f f f 0vx vy vz (11)
f f 4’ 0vy wz

0 0 0 1

The sub—dsicriminant is affected only by rotation . Rotation does

not affect the constant term , in the lower—right corner of the discrim—

inant .
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The translation matrix is:

0 0 0~

0 1 0 0
T =  (12)

O 0 1 0

6 6 6 1
x y z

Translation does not affect the sub—discriminant . The constant

term is affected only by translation.

A transformation can ‘be formed by a rotation followed by a trans-

lation (F = RT), or by a translation followed by a rotation (F = TR).

T and R do not usually commute, just as rotation and translation to not

usually commute.

2 .2  Canonical Form

It is possible to put the discriminant of a surface into a canoni—

cal form , in which the axes of the coordinate system are the axes of the

object , with non—zero diagonal elements of the discriminant being given

precedence. In finding the canonical form, one also finds the transform-

ation matrix which will transform the discriminant into its canonical

form .

In the following algorithm , the discriminant P is transformed into

its canonical form Q. by transformation matrix F. The matrix Z is used

as an intermediate transformation. The operation “~~~“ means assignment,

as in a computer program .

a) First , a rotation is performed to diagonalize P .  This rotation

is represented as the orthonormal matrix ‘F . We have Q 
~ 
‘F ~U U U U U

______________ 
~~-•.--~~-— •~~~~~~ - _ _ _ _ _
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If has both non—zero and zero eigenvalues , the non—zero ones should

be placed towards the upper—left corner of Q ,  and the zero ones towards

the lower—right .

‘F is then formed by au~ senting T:

(13)

L°°° 1J
We have Q ~ 

‘F F ¶ T
, and Q is of the form

~A o o ~~]
I O B 0 H ~
0 0 C

L G H J K J

b) We must now try to eliminate as many off—diagonal elements as possi—

‘ble. (Skip this step if A = B = C = 0.) We take as:

r j  0 ~
0 1 0 0 (i1~)
0 0 1 0

6 6 6 1

where

6 = —G/ A ;x
6 = — H / B  if B ~ 0, = 0 if B = 0;

5 = 0 if C = 0.

We next have the “standard” transformation:

p .~~E p ~~
T (l5a ,b)
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c) At this Point P is in one of four forms

If P is in the form:

A 0 0 0

O B O O

0 0 C 0

0 0 0 K

then it is already in canonical form.

If it is in the form :

A 0 0 0

O B  00

0 0 0 J

0 O J K

then it is a parabolcid . See ( d ) ,  below , on how to eliminate the K

(constant ) t e rm.

If it is in one of these forms:

A 0 0 0  0 0 0 G

0 0 0 H  0 0 0 H

0 0 0 J  0 0 0 J
O H J K  G H J K

then we must remove all off—diagonal pairs except for the tc p— ( l e f t — )

most one . This may be done as follows :

For the case on the left , one uses the transformation matrix:

1 0 0 0

~.. O K S O

0—3 K 0

0 0 0 1

_____________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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wit h + S2 = I and =
o J

This removes one of the off—diagonal pairs , making J=0. One then

uses the standard transformation (l5a ,b ) .

For the case on the right , this must be done twice, once to remove

H , and once to remove J.

• d) At this point , ? has one off—diagonal element , if K = 0, we have

the canonical form . If not , we make a translation of’ the same form as

eq. (lL~) except with the following 6’ s:

6 —K/2G if G~~~O , 6 O if G O;x x

• 6 = — K / 2 H if H~~~ 0 , ô = O i f H = o ;  (17)

6 = _ p ~’J ifJ~~~0, 6 = O i f J = 0 .z

After applying the standard transformation (15a ,b), we have the final

• canonical form for F, and the final transformation matrix ~F.

2.3 The Discriminant Form for Conic Sections

The conic sectIons are quadric curves, being also of ‘‘ie quadratic

form . The discriminants of a conic are 3 x 3 matrices , and the sub—

discriminants are the 2 x 2 upper—left submatrices of the discriminants.

3ther than the reduction in the number of dimensions , the conic sections

are completely analogous to quadric surfaces; the transformation matrices

are slightly simpler :

f f 0 K S O
ux uy

f f 0 = —3 1( 0 (18)vx vy
6 1 6 6 1x y x y  

—

~‘ 2where K + S = 1

~
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2 .~ Classification of Quadric Surfaces and Conic Sections

Tables I and II are guides to the classification of quadric sur-

faces and conic sections , respectively . They are adapted , in part, from

a chart given by Dresden [Dresden 1930, p. 230].

One of the columns in these tables is the absolute value of a

signature. The signature of a matrix is the number of’ positive eigen—

values minus the number of negative eigenvalues. —

:n Table I, we use the following :

°l1 q10 q
13 ‘

~1L~ 
A D F

D B E H
= 

q
21 

q29 q
23 

q214 
= F E C J ; ( 19)

q31 q
32 

q30 q314 G H ~ K

q141 q142 q143 ~~

r A D F
Q = i T  B E 1  (20)

LF E C

= Har.k(Q); m = Rank (Q ); S = abs (Signature(~, )).

T = ~, o . .  = A + B + C  (21)
1 i=l

3 3 ~~~~~~~~ q.
T = = AB + AC + E C — D 2 — E 2 — F 2 (22 )

2 
~~~~ ~~~~ 

q~~,

3 ~ q, .. o .
D = ~~~ = T + T K — G2 

— H 2 — (23 )
2 

~~~~ j=i+1 q
j1 ~~ 2 1

-j
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2 3 14 q.. C . q..
I 13 

— 

i=l •~=i+l k j + . ~jj ~~ ~~~ 
( 214)

~~~~~~

= ABC + ACK + AEK + BC1( - 2 (DEF + PGJ + DGH + EHJ )
(25)

— D2(C+K) — E2(A+K ) — F2(B+K ) — G 2 (E+ C ) — H2(A+C ) — J2 (A+B )

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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SINGULA P SURFACES

s Conditions ~ea1 surface imaginary part in parens .)

Planar

1 0 0 IN7AL~J

1 1 1 Coincident Planes

2 0 0 Single Plar.e

2 1 1 T2>C INVALID ( Imag . Parallel Planes )

2 1 I D2<0 Two Parallel  Planes

2 2 0 T~<O Two Intersecting Planes

2 2 2 T2 >0 LI:-~E ( Two Intersecting imaginary Pla nes )

Non—p anar Singular

3 1 1 Parabolic Cylinder

3 2 0 T2<O Hyperbolic Cylinder

3 2 2 T2>O; T 1 D3<0 EllIptic Cylinder

3 2 2 T 2 >0; T 12 3 >O INVALID (Imag. Cylinder)

3 3 l a  Cone

3 3 3 ~ POINT (Imaginary Cone )

No:i—S IN G~JLAP 3~ RFA~~~S i=~-;  m=2 if det(Q ) = 0

O denotes zero; m 3  if det(Q ) ~ 0

+ ~enctes positive; 
— denotes negative ; ± -ienotes nonzero.

S Cond it i ons  Surface

o + 0 ~T2<O) Hyperbolic Paraboloid

0 — 2 (T2>0) Elliptic Paraboloid

± + 1 a Hyperboloid of One Sheet

± — 1 o. Hyperboloid of Two Sheets

± + 3 3 INVALID (Imaginary Ellipsoid)

± — 3 Ellipsoid

Conditions : a: T 2 >0 ; det(Q ) x T 1<O;  or : T 2 <0 .

~~~: T2>O; det(Q ) x T1 >0.

Table i. Guide for the Classification of Quadric Surplus

(adapted from Dresden 1930)
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q
11 ~12 

q
13 A 0 0

= Hanh(C j ; ci = Par ~k ( Q ) ;  s abs (Signature(Q ))

T c,, +~~~~~ A + 3
1 ‘

~~~~~

2 ‘
~ 0 . .  0 .

= I “ i’ ~~“ = ~ + ~: + .s:< — D 2 — — H 2
i 1  ~~i+1 ~~

d rn s Conditions Curve

3in~~i1ar

1 0 0 INVALID

1 1 1 Coincident Lines

2 0 0 Single Line

2 1 1 0 > 0 TJALID ( linag. Parallel L i n e s )
2

2 1 1 D~ < 0 Two Parallel Lines

2 2 0 
~~~~ 

< 0 Two Thtersecting Lines

2 2 2 j Q J  > 0 POI:IT (Inter .  Imag . Lines)

N o n — s i n .~u 1ar

3 1 1 Parabola

3 2 0 k I  < 0 Hyperbola

3 2 2 I Q I  > 0; ~ ,IT I < 0 Ellipse

3 2 2 I Q~! > 0; RJT 1 > 0 NVP~ ID (Imaginary Ellipse)

al-1e ::. Guide for the Classification of Ccnic Sections

(adapted from Dresden 1930)

_ _ _  • • • ~~~~~~~~~~ • •  • . ~~~~~~~ _ _ _ _ _ _ _ _  _ _  _ _
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i~~~. CLAE~~ i C X :ON o~’ 0,UADF :C F)JPFAC ::;TE ECT:C-N.~

Given two cuadric surfaces , the f~ rot two cue s t iono that  ar ise  are :

1) 2o they intersect ~ and

• 2) If so , what is the natur e of the i r  auai r i c  surface  intersection

curve (.~3:C)?

3.1 The Pencil of Two 0,uadric Surfaces

Suppose we have two cu a dr i c  su r f aces , wi t h  I isc rin . inan ts  P aol

~~

ifl m a t r i x  focm , the ecua t ions  fo r  the two surfaces are :c P x~ = 0
~~

and x ~, x = 0.

The ec ’iaticn

~ (Q— ~P )~~ = 0 (26)

r e :r esen ts , for  all real  values of c~(finioe or infinite), a surface on

~~ ~~~~~

For a = 0, we have the surface ~~. For t = ~~~ , we hav e the surface

:±‘ sur faces  P aol , in t e r s ect , then the i r  i~~te r sec t ion  (;.::c) os

t he  “case :ur-re ” of the ren c i l , and it lies in all the surfaces  cf the

:encil.  This “base cur-f e” is oct to be confuse-i with the “base cur ’re ’

of a rarameteri:ation surface , wh ich  will be use-i extensively la ter  on.

If the two surfaces do not intersect , then none of the real sur—

faces of the Dencil in te r sec t .  in addition , the nencil contains some

imaginar y su r faces , and these nay be among those l is ted as NVAL~ D in

Table I,

* Since 3P represents the same surface as P for  any real n o n — z e r o  scala r
3;  if ~=l/a, lim (1/a)(Q—aP ) = lim (~~/ a )  — P = —F , which is equiva—
- a-~~kent to P.

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~ 
•-

~~~~
•
~~~~~
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The general fo rm for a member of the pencil of P and 0. is given by

= Q — oP. (2 7)

3 .2  Cl a s s i f i c a t i o n  of Senc i ls

-line may c l a s s i f y  aenci ls  acooru ing  to the c lass i f icat ion of the

sim~ lest  sur face  in the  p e n c i l .  If the  pencil has a base curve, then

th e  ‘case curve (a  QSIC) has the s~cne c l a s s i f i c a t i o n  as its pencil.

~f , fo r  same a , ?( Ci) has rank one or two , then ? (a )  represents

e i the r  a t iame or pair  of p lanes.  This  pencil is called “planar ” .

Fa i l ing  onis , if , for  some a,  P ( a )  has rank three, the  pencil is

“ non— cl an ar  s ingular ” .

F~ c~ is never s ingular , then  it always has rank four, and the

penci l  is non—singu la r .

wo su r faces  do not in tersect  if one of the following occurs:

i)  For some value of a , P ( a )  is ::FTAL:D; or

2 )  E i the r  F or Q does act intersect  some

3 ,3  eoermin ing  Whether a Surface Thter sect ion is Planar or Singular

~f , for some value of a , P ( a )  has rank of two cr less , then  the

r enci . is ~lanar . As Whom has pointed out W-con 19T’O , tp .  31—3 61 , this

occurs when two conditions are met for the same value of a :

(I) D et (R( a) ) = 0; and

(2) The sum of the 3 x 3 principal minors of P(a) vanishes . This

may be expressed as: 0 3 ( R ( a ) )  = 0.

If condition ( 1) is met but condition (2) is not , then the surface

is non—planar singular .
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3 , s Non—singular Pencils

• If F ( a )  is never singular , then the pencil is non—singular .

The A~pendix decionstrate~ that a non—singular QSIC must lie in a

hyperbolic paraboloid.

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ • ~~~~~~~~~~~~~ ‘~~~~~~ 

_
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IV. THE ORY OF PARA 4ETERIZATION

Th t h i s  section , meth ods  of parameter izat ion are discussed . The

parameterizatior. is lone In a u— v— w coordinat e system . A congruence

transformation is then used to t ransform point coordinates into the

x—y—z system . The rarameter is lenoted. by t.

1.1 Parabola

Suptose we have a sarabola of the form Au2 + 25v = 0. Taking

= —A/2H , we hav e v mu 2 . The parameter equat ions  are

u = t ;  v = m t 2 . (2 8 )

..2 El’ios ’~-

3ur~ :-se we have an elliose of form ~i.U
2 + + ~

‘. = 0. Taking

= /-:-:JA aol r = /—~i 3  as bein - the semi—axes , we have
V

2

The parametr ic  equa t ions  are

2t l—t 2
u = 

~~+~~ 2 r and v = 
l+~~

2 r .  (~ 9)

This form is to ‘be used only —l<t<+ 1 , in which case v will have

-only positive values. (A more complete method is given in section 14.~~.)

This parameterization is well—behaved for values of t within the

range E—l , +1]. That is , if ds = /duL 
+ dv , ds/dt does not vary too

much if r and r are of the same order of magnitude .
u v 

-~~~~-~~~~~~~~~~~~~~ —- --S-.-— -~~~~~~- S - -~~~~- ----
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..3 Ryperbola

Suppose we have a hyperbola of the form Au 2 
+ By 2 

+ K = 0.

Taking r = and r = /~K/B , we have
U V

• 2t l+t 2
is = 

~~
_

~~~
2 r ;  v = 

l—t 2 
r , (30)

fo r  —l<t<+ 1 .

A hyperbola has two disjoint parts. This parameterization gives

only one of them the one for which v>0.

in contrast to the parameterization of the ellipse , t’n~ s form is

nr~t well—behaved. At values of t approaching ±1, small changes in t

result in large :har.ges in u and v. However , the hyperbola is then very

cl:se t :  i t s  asymototes an-i is orac t i ca l l y  a straight line .

~~n:cs (et~~ :ses coo ny rcolae), toe following modif~—

cati:os na’. :~ ~3e : :

Sele’t  a :ar~~~-~- -e r t ’ ~~ i : n  t ake s  ot ne values from —2 and +2

inclusive :‘:r e~~~i :2e .L . F - r  ny-~~ c- :e - . ~~~~~~~ •-c~~.es —2 , 0, and +2 are

e x c l u d e d . )

F:r t ’ > O , we have t = - ’ — L  ~o :

~ < 3 , w~ have t = t ’ + 1 = — I .

T hi s  ;~e i s  :‘ -

= 15 S~~~~~ = 
~~~~~~~~ r .  (31)

ano n1oe’~

= ~~—-‘- ~‘ • = r .  ( 3 2 )

_ _  —-‘5 -•.. -
~~~~~~~~~~~~~~

-
~~~
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Since for an eliipse,u and v should be periodic functions , we can

set up a parameter t” , which is normalized to t’ by adding or subtract—

• ing multiples of four , such that t’ is in the range [—2 , +2].

~.5 Non—planar Intersections

The parameter i zat ion of planar intersections is described above.

For non—planar intersections , the curve lies in a quadric surface which

has a “base curve” which is either a line , a parabola, a hyperbola, or an

• ellipse. This base curve may be a cross—section of the quadric surface,

in a plane perpendicular to the main axis. There is one set of

straight lines , (one line passing thru each point of the base curve)

such that each line lies wholly in the auadric surface, and every point

on the quadric  sur face lies on one of these lines.

One uses parameterization to select a point on the base curve and

its corresponding line. By solving a quadratic (second—order ) equation,

one can then find the intersection of the line with any other quadric

surface. in this manner, all the points of the Q.SIC(s) may be found.

SPECIAL NOTE : THE FOLLOWING ALGORITHM HAS NOT BEEN IMPLE~~ NTED , AND IS

PRES~~IT~~ ONLY AS A GUIDE TO A FUTURE I~~~LE~€NTATION .



V. DATA NEEDED BY TEE ALGORIT }~1

The a lgor i thm needs the following input informat ion  in some form :

( )  For es-o h objec t,  it needs to know the dimen sions of the “obj ect

box ” , which is a cube or rectangular parall epiped in which the object

i s conta ined , as well as the resolution and vector lengths which will

be used .

( 2 )  Sur face eauat ior.s  must be known for each surface .  These may be

rreseote-i either as ten coefficients (in the form of e~ . (1)), or

presented as follows :

a) The type of surface (ellipsoid , ‘ny~erbo1oid , cylinder , etc.).

b) The lengths of radii , semi—axes , etc.

c)  The orientat ion and displacement from the or ig in .

An interactive graphics terminal could be used for spec ify ing  a

surfac e and then manirulat ing and distort ing it to suit .

-
• ( 3 )  Founds must be specified for  each quadric patch in the sam e manner

as in the Woon algorithm .

(~ ) Surface i n t e r sec t i ons  must be specified . For each intersection

the user must specify to the a .gorithm the two intersecting patches ,

the multiplicity of the intersection (how many disJoint parts it has),

and whether it is -to be a “smooth” or a “ sharp ” intersection.

A “sharp” intersection abruptly separates tvc surfaces , providing

• a clear edge which can be seen if viewed from a proper angle.

“2m~oth” intersections are used when several quadric patches are

‘osed to apsroximate a siogle , higher—order surface. These are act 

-~~~-~~~ --•-
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ir.c lude-i in drawings unless they occur along limbs. Often the first

der ivat ives  wil l  be continuous across a smooth intersection. If one

wished to approximat e a torus (donut) by usi ng pat ches of ell ips oids ,

hyperboloids of one sheet , and cones , smooth intersections would be

used .

One usually specifies intersecting surfaces as bounds for each

other. However , if there is a smooth intersect ion with a continuous

f i r st derivat ive , then it may be difficult to tell whether a point is

cn one side of a bcundary or the other . Therefore , t he program should

autom atically compute , for every smooth intersection , another surface

from the tencil of the two in tersect ing surfaces. Thi s surface will

act as an auxi .iary bounlin~ surface.  It should meet ‘oath intersect—

0mg sur:aces at a s.oarp angle .

-• -L-- • • _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - - -
~~~ - -- ~~~ - — -
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111. CLASSIFYING SUFFACE INTERSECTIONS

Consider two intersecting surfaces P and Q. If either is planar ,

then the intersection is planar. The algorithm described in section

VII will apply in these cases.

If neither of the two intersecting surfaces is planar, then one

must find the “simplest” surface of the pencil , according to the list

of Table Ill. The simplest surfaces are those in which the subdiscrim—

inant is sin ular. We first solve the equation :

det(F (~~)) = det(~~-~P~~ = 0. (33)

In order to  insure that this has at least one real root , we will dis-

allow the case where I P~ is singular and is r ,cn—singular . (If

t h i s  should harpen , we interchange them.)  Equation (33) is of (at  most )

th i rd order . Thi s may “ne wri t ten as:

_det (P u
)
~~

3 + t a  — ic~ci. + dea (Q ) = 0, (3L~)

with K2 being the sum of the determinants of the combinations of two

colu mns -of P and -one of , and K being the sum of the determinants c- f the
is 1

-comb inat ions of one column of P ari d two columns of Q
U U

Once a single root is fo und , synthetic division may be used to fiat

the other real roots , if they exist.

As pointed out in [Woon 1970 , p~ . 31~_ 36] R Ca )  is planar when
-

• 

det(R(a)) = 0 and the sum cf the 3 x 3 princiral minors of R(a) also

vanishes. (This last condition may be expressed as: ~~3 (~~~( L 4 ) )  = C.)
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These conditions may only occur when det(R (a)) = 0. Therefore , each

root in a is tested to see whether R(a) is ~lanar. If any R(a) are

planar , the simplest is then chosen as a parameterization surface.

if none of the R(a) so far tested is planar, one checks to see

whether any one is a hyperbolic paraboloid. If one is , then it is used

f-or parameterization (see Section 8.1~). :f not, then one of them may

be a cylinder , which would then be used for parameterization.

If, at any point , an IN7ALID RCa) is found , then the two surfaces

do not intersect.

Table III contains a list of the surfaces which may be used for -

‘

parameterization. The simplest surfaces are near the top of the lion.

________________ - ~~~~~~~~~~~ 
—
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:1::: (Imoo ~ nary I :a ter seot ing  Planes)

.)ing e ~_one

Coinc iden t  P anes

?arallel Planes

Intersecting Planes

:~cN— S :N c-u~~P: Eyper ’co l±c  Paraboloits

NON—PLANAR Parabolic Cylinder

I l lip t ic  Cylinder

Hyperbolic Cylinder

Cone

Table . list of Surfaces  which Nay
Se Used for ?-a:ameteri:ation
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VI I .  ?LA:;AR INT PSPCTllNS

A ~encil is ~lanar , if , ftr some c~, ‘Iet(F(a)) = 0, and

2: 3 (?(~ L) ) = 0.

7.1 F indin .o and Class i fying Inte rsections

First one must determine the nature of the intersection (~~oco rding

to Table ) and transform the planar surface into canonical f o r m .  Then

cr~ selects som e surface of the pencil , other th an R ( a ) ,  and anolies

the same :ran : fr m a t icn  to it . This surface will usually ice either P

If th e  in te r sec t ion  lies in a L:N: , then , in the s~ ace of the -can-

onical form , th is  li ne is the w—ax is .  Ia this case, one cancels the

fi rst  two rows and the f i r s t  two columns of the discr iminant  of the
C J \tone r sur :ace , oett:ng a 2 a 2 matrlx of the :orm ( K)

C = J K 0, then the l ine is the intersect ion.

If 2 = = 0 and K ~ 0, thea there is no intersection.

Otherwise , taking~~ = 52—CK , we have:

::~~- in t e r s e c t i o n  if J°—CK <

-One intersection point if J 2
—C K = C ;  or

I~io in tersect ion point s if J2—CK > C.

If the int er sec t ion  lies in a si ngle ~lane , or in two coincident

planes , the plane is the u—v plane in the space c-f the cancnical form .

The takes the i i sor Th inac -.t of the othe r su r f ace ,  cancels out the third

r;w ant thin colum n , and ccm~ ares the resultant 3 a 3 conic section

ilsorominant a~ainsn Tab e II to find the nature of the iatcrsectTha .

..f ~~~~~ toere ~s no :ntersect:cn.
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c) If ~he intersection lies in two Dlanes , one must factor the diplanan

i:.terseo:ioa int o its two constituent planes. If there are two ~arallel

tlanos , we hav e an ecuation Au 2 + K = 0, with AK < 0, which is factored

tat: ~-~T~u = 0.

:‘ there are two intersecting planes , we have Au2 + By 2 
= o , vita

A3 < ~-
, which is factored into /~ Tu ± v’j~Tv  = 0.

Then , each of t he se  ~lanes must be rut into single-plane canonical

fo r m , m ak i ng the acorocniate transformation to the other surface for

each ola ne .  F ina l ly  each. rlane roust be roocessed senarstely, as abcve.

If it should hapr en that a planar intersection coosists tf two

straight lines , these must be nrooessed serarately.

~.2 ?crameteri:ation

After the nature of the planar intersection is found , one has

~u nless the in te rsec t ion  was a z:: ::) , a conic section in the u—v—plane.

The then ro ta tes  the u— v plane so that the axes are the axes of toe

coat-c . For a rarabola , the v—axis is the axis of symmetry . For a

hymenbola, the u—axis separates the two pants. One must , as always ,

rooks o:orrorniate transformation of both the other surfac e ~nd t f the

transformation matrix , ‘F. One them asplies the  narame:ent:a t i :a , as

outlined in. section 7.

When actually tracing rcint s, one is in x — y— z space , not u—v— v

sn ace .  Therefore , it would be more e f fic ien t  t o  net the x — y — z

co -ordi nates of a point d i rect ly , wt thout having to a:an sf-utco cc- : r tina tcs

each time , arid without  t ak t n z  primary memory spac e to store the

t r ans fo rma t ion  matr ix . The form cutl ined below accoronlishes ~-cst this . 
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x = (a t2 + + c )/6 + dx x x x
y = (a

7
t 2 + b~t + c

r
)/’

~ 
+ ( 35 )

a = (a t2 + b t + c ) / ~ + dZ a a

= 1 f~ r a rar ab oli -or a lone ;

- 2 - -  -0 = I + f o r  an eu lop se ;

= 1 — t
2 

for a h;rneric-oia.

Vsing th i s  form , one nay rerform the or~orcsf:rroaoi:n once , while

se t t i ng  up the c o e f f i ci e n t s  (a , b , c ,

For coronleteness , one may -use the fo rms  ou t l ined  in s ect i o n  4 . -~ .

Table I’! co n ta in s  a PCPTRAN r cu t in e  to do o at s .

7 2  ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

:;ot all of a Quadn ic Surface In t e r s ec t i on  Curv e  (03:: ) is pant of

an edge. Some or all of a CSIC aay be out of ‘bounds for  one cr ‘both

of the  i n t e r sect i ng surfaces.  Since , f :r nlanar inte rsec t ions , each

val ue of the parameter reocreseat s a un icus  t-oint , ths eniocint s of an

cogs may be represented as p arameter  v-a:ues.

~aca  ~~~~~~~~~ nas a muut lp l : caty , wroo c a os one noucoer 00 c:storcct ecges —

wh ica are in tersec t ion  cur-res -of the sam e two su r f ace  pa tches .  An

ex a m n l e  of th i s  wool be two cones , b ac k —to—back , w i t h  a th in c i rcular

cylinde r dividing their i n t e r sec t ion  into two parts. This in te rsec t ion ,

between the two cones , has a mult ipl ici ty of two .

:;~ i n t e r sec t ion  of a sphe re with a cylinder -of d iameter  less than

that  -of the snice re , such that the cent er of the  sobe r s is slang the axis

of the cy l in ie r , is rct a si ngle in t e r s ec t i on  of r o u lt in l i ci t y  two , b-ct 

-- ~~- ~~~~~ -- -5—- -5~~~~- - 
-
~~~
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Note: In the foll-owdng program , x , y ,  and z are X (1), X (2), and X(3);

a is A (l,x ) ,  b is A(2,x), C IS A(3,x) , and d is A(~4 ,x ) ;

t Is T, and t’ and t” are TP.

SUBROUT INE PLANAR (TP , A , ITYPE , x)

C T? IS THE PARAMETER , A IS THE COEFF . MATRIX , &

C X IS THE R~~ JRNFJ) co—ORD::-~ATE LOCAT:CN.

C :TYPE = -l HYPERBOLA

C 0 PARABOLA OR LINE

C +1 ELLIPSE

REAL A(~~,3) x ( 3 )

IF ( ITYPE ) 2, 3, 1

CENTRAL CONICS

1 TP = TP — I~*INT(Tp+3IGN (2 ,Tp ) )/ ~~)

2 T = TP - SIGN ( 1. , TP)

D~~OM = SIGN (1. + ITYPE*T*T , TP)

GO TO 1~ 
-

C-— PARABOLA OR LINE

3 T = T P

DENO M = 1.

CO~~UTE

1~ D O 5  1= 1, 3

5 x(I) = (A ( l,I)*T*TI-A(2,I)*’T+A (3,I))/DEN0M + A(~4,I )

RETURN

END

Table IV. FORTRAN routine for solution of eq. (35) 

- -  - _ _ _ _ _ _ _
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Fi :: l: : for each

rather two separate intersections of multiplicity one , as the two parts

of the cylinder are two separate patches (see FIg. 1) .

A QSIC will have one pair of parameter limits for each unit of

multiplicity.

if a quadr ic sur face int er section is a point or pair of points,

then any points which are out—of—bounds must be rej ected . Otherwise ,

parameter limits.must be found . The program must find one or more ranges

of the parameter for which the parameter is continuously within bounds

fo r both of the intersecting surfaces.

First the program establishes a list of bounding surfaces for the

QSIC. Then a scan is made of the possible values of the parameter ,

searching for a value whose point is within bounds .

For an ellipse , the par ameter is taken from —2 to +2 ( in  t ’  form ) ,

with parameter increments of about 0.1. For a parabola or hyperbola ,

the limits are the values of the par ameter at the limits of the object

box , but the increments for the hyperbola should be about 0.1 also.

- - - - 5 - -- - - -  5
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~As th is  is done , the value of ~~( x )  = xQ
b 
x for each bounding

surface is saved. If no point satisfying the bounds is found in the

in i t i a l  scan , then one may look for “dips ”*in the values of the

This way one may f ind a small intersection which was over—

looked before. Interval halving is performed at each dip to see

whether it resu 1ts in a previously missed small intersection.

Once a point within bounds is found, one can begin looking for the

edge ’ s endpoints. Basically, t his is tracing the edge, for different

values of the parameter , unti l  a point out of bounds is found. (Often

the first point wi th in  bounds has an already—traced neighboring point

out of bounds.) When such a pair of points is found, one may use

interval halving to locat e the precise end point. If it is known which

bounding surface function changes sign to cause one point to be in

bounds and the other out of bounds , one may use Newton ’s method on that

“critical” bounding surface function.

If one is looking for another edge on a particular plane and cannot

find one within the parameter values not included in the range of the

f i rs t  edge , it is possible that the first edge is really both edges,

with a small gap in between. Then one should go back , checking all

points where the value of any bounding surface function changes sign ,

to see whether these points are endpoints of such a small gap. If

none is found , it is likely that the user made an error.

Special note on ellipses: If there are no bounds on an ellipse

that cause parameter limits, then the limits are <—2 ,+2>. If the

poi nt t ’  = —2(+2) is in the middle of an edge, using the t” format

allows one to extend paramater limits above +2 or below —2.

* An extremuzn towards zero . 
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VIII. NON—PLANAR QSICS

A QSIC not contained in a plane is non—planar or twisted.

Appendix A shows that such a QSIC is always located in a quadric surface

with at least one set of non—intersecting straight lines passing through

every point on the surface.

This section shows how to utilize this property to parameterize a

non—planar QSIC . Given a parameter, one may find a point (or pair of

points) by solving an equation of rio more than second—degree . Since

the quadratic equations is easy to solve, this method gives the exact

location of each point . When there are two points for one parameter

value , then one is associated with an increasing parameter , and the

other with a decreasing parameter.

8.1 Basic Techniques

A non—planar QSIC is contained in a quadric surface which shall be

called the “parameterization surface”. it is one of the surfaces of

the pencil of the two intersecting surfaces. Table III contains a

list of these.

Selecting the R (ct) which is “easiest ” to handle, we find the proper

parameterization for its base curve. For a cylinder , the base curve is

a cross—section of the parameterization surface, in a plane perpendi—

cular to the main axis.

Given a parameter one finds the corresponding point on the base

curve us ing eq’s. (32). These coordinates are referred to as x0 , y ,

and z 0 .

~

- -- -

~

---- - -- -- - -  - -  
~~~~~-
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One then selects any member of the pencil other than the para—

meter izat ion surface. Usually this will be P or Q. One finds the

straight  line in the parameterization surface which passes through

point (x0 , y0 , z0 ) ,  and solves for the intersection of the line and the

other surface. This will be a second—order equation.

Suppose 
~~~ 

y ,  and ‘
~~~~ 

are the direction cosines of the line

corresponding to the base curve point x 0 , y
~

, z 0 . The location of any

point on the line is given by

x = x 0 +

y = + 1y3 (36 )

z = +

where s is a secondary parameter. If the other surface is surface Q

and has an equation of the form of eq. (1), then the second—order equa-

tion in s is of the form:

a s 2 + b s  + c = 0  (37)

where

a = q y 2 + q ’y 2 + + qi’( + + ~6 Y~ Y~

b = 2 q x y  + 2 q y y  + 2 q z y  + q ( x y + y y ) + q ( y y + z y )
l O X  2 o y  3 0 Z  ‘+ o y  o x  5 Q Z  o Y

+q ( z y + x y ) + q y  + q y  + q y6 o x  o z  7 X  e Y  9 5

c q x 2 + q y 2 + q z 2 + q x y  + q y z  + q z x  + q x
1 0  2 0  3 0  ‘ . 0 0  5 0 0  6 0 0  7 0

+ q y + q z + q = q(x ,y ,z )
e o  s o  o o o a

_ _  - - - 5 -—— -- -~~~~~~~-
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The quadratic discriminant (not to be confused with the d.iscriminant

matrix of a surface ) is ‘V = b2 — bac . If ~V < 0, there are no real

roots iri s, and the corresponding value of t is actually invalid.

If ~ = 0, then there is one root in s. If D > 0, s has two real

roots. There are as many intersection point s along the line as there

are roots in s. When tracing a QSIC, one uses the lar ger valu e of s

when the parameter is increasing , and the smaller value of s when the

parameter is decreasing . This is discussed in more detail in section IX.

8.2 Cylindric Intersections

For cylindr ic interse ctions , the line throu gh each point is parallel

to the axis of the cylinder , whieh is the u—axis. One uses the substi—

tut ion

y e ; ~ e ; y ex x y y z z

with (e e e ) ( 0 0 l ) ’ F .
x y z U

The cross sect ion of a cylindric intersection may be taken anywhere

along the main axis but the u—v plane is simplest.

it 
__________________________ ___________________________ ___________________________ _______ 

~~~~~~~~~~~~~~~~~~~~ -—~~~. - - --
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8.3 OSICs Lying in Hyperbolic Paraboloids

A hyper bolic para boloi d has two set s of str aight lines which lie

totally in the surface. These are called reguli . Each regulus is a

set of mutually skew lines , and each point on the par aboloid is the

inters ection of one line from each regulus.

To find the coefficient s of parameterizatiori, one takes the hyper—

bolic paraboloid P and the other surface Q, and transforms them both by

a congruence transformat ion so that

A

P is in can: nical form :

0 — B  0 0

~ 0 0 ~ 
(38)

0 0 J 0

If A is negative , reverse the sign of every element in P.

Now transform both P and Q by the following valid transformation,

which is a product of a rotation and a scaling transformation. It will

distort the surfaces but not change their nature :

v’1/2A —v’1[2B 0 0

/l/2A /lT23 0 0

O 0 —1/J 0

0 0 0 1

The result is that Q is in the form

0 1 0 0

1 0 0 0

0 0 0 — 1

0 0 — 1  0 

-5 -- -5 
—-5 — -

~~~~—
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This is equivalent of the equation ( in  u—v—u space) uv w. If t is the

primary parameter arid a is the secondary parameter , u t , v s , and w st . -

in the x—y—z coordinat e system , we may express the coord inat es in

term s of equat ions (36 ) as such:

x = ( c t + d )  + (e + f t ) s
— x x x ~c

= (c
i
t + a~ ) + (e

7 
+ f~t)s (3 9)

z = ( c t + d )  + (e + f t ) sz z z z

If ‘F is the transformation matrix from u—v—u space to x-y—z space,

then the co—efficients are:

—
c C C 0x y z

e e e 0x y z 
= ‘ F  ( 1~O)

f f f 0x y z

d d d 1x y z 
—

- 5 -- - ----- - - ---- - -—-- —- A
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IX. PARAMETER LIMITS AND QSIC TRACING

9.1 Basic Parameter Limits -

For planar QSICs , parameter limits are defined in a two—part pro-

cess. In the first part , the basic limits are found . For an ellipse ,

the basic limit string is <—2 .,+2.>. For hyperbolae and parabolae,

which extend to infinity, the basic parameter limits are those defined

by points where the curve meets the limit of the object box .

Once basic limits are found , the bounded parameter limits are

found, using the process outlined in section 7.3.

For non—planar intersections , finding the basic parameter limits

is more complicated . These limits are the limit s of the range of values

of the paramet er such that both the following conditions are met :

a) If the base curve is a line , a parabola , or a hyperbola , the line

corresponding to the parameter must not lie totally outside of the

object box; and 
-

b) Equation (37 )  has at least one real root . This is equivalent to

saying that the quadratic discriminant ~ = b2—hac is non—negative. One

would find those ranges of the parameter t’ for which V > 0. The limits

of these ranges will be values of t’ for V 0. Of course , if for all

values of the parameter t ’  satisfying condition (a), V < 0, then there

is rio intersection .

Once the basic limits are found , basic limit strings may be set

up. For non—planar intersections , limit strings have three elements,

not two . For basic parameter limits , the first element of the limit

string is one of the limits , the second element is the other limit , and

the third element is the same as the first .

-5-5 -

~
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ii.
9.2 Tracing the Edge to Find Bounded Parameter Limits

One next traces the edge within the basic parameter limits. The

limit string is <t1, t2, t3> , with t 1 = t 3 . First , one traces from t 1

to t2, and then one traces in the reverse direction from t 2 to t 3 = t 1 .

The two traces use opp osite “radical signs” in the solution of eq. (37) .

In any trace from t .  to t .~~1, if the parameter is increasing

C t .  < t .÷1
) , one solves eq. (37 ) with a positive radical sign

s = (—b+/b’—hac)/2a (131)

If the parameter is decreasing ( t .  > t .~~1) ,  one solves it with

a negative radical sign

s = (—b—/b’—hac)/2a (132)

This implicitly gives the radical sign, without it having to be

specified explicitly . The radical sign is the “Boolean parameter”

mentioned earlier.

As one is tracing the curve , one looks for parameter bounds just

as in section 7.3. If the point corresponding to t’ = t 2 is in bounds ,

there is a bounded parameter limit string with t 2 as its second element .

All other bounded parameter limit strings would have two limits. Since

limit strings for non—planar surfaces should hav e three element s , the

second element may be repeated . Whenever t. = ~~~~~ there is no trace

performed.
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X .  LIMBS

10.1 Defining Limbs -

Since quadric surfaces are generally not flat, it is likely that,

from a part icular viewpoint , the quadric surface may “fold in back of

itself ” . The locus of point s where this happens is the limb. This

t erminology is due to [Comba 1968]. A virtual edge is a se~ nent of a

limb.

More precisely , the limb is the locus of points on a surface where

the normal to the surface is perpendicular to the line—of—sight. These

points must satisfy both these conditions :

4. —. .
q(x ,y, z) = 0 and p = s.grad q = 0 ( 1 3 3 )

4.
where s is the line—of—sight vector from the object point to the view—

point ; and grad q is the surf ace normal, which may be expressed as a

column vector:

2q 1x + q’.
y + q 6z + q7

grad q = 2q2y + q’.x + q5 z + q6 (1314 )

2q 3 z + q6x + q5 y + q9

10.2 Orthographic Projections

For simplicity, let us assume that the object has already been

translated and rot ated so that it is now in the picture space. We shall

call the axes x , y, and z. For othographic projections , the viewpoint is

considered to be on the x—axis at infinity.  The l ine—of—sight  vector is ,

therefore, along the x—axis and its normalized value is (1 0 0). From



-
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~~~
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eq. ( 1 4 3 )  we hav e

p s.grad q = 2 q x + q y + q z + q 0 ( 1 4 5)

This is a plane . It is called the “polar plane of the surface” . It

does not exist if q = q = q = 0. (A paraboloid whose axis is the

x—axis is an example of a surface without a polar plane.)

10.3 Perspective Projections

Woon did not discuss polar planes for perspective drawings, and it

happens that they do require a different equation than orthographic

drawings do. Assume that the viewpoint is on the x—axis , a distance D

from the origin . We mak e the simple transformation x ’ = x - D , putting

the viewpoint at the x ’—y—z origin. The line—of—sight vector thus
-p.

becomes a = (—x ’ —y —z).

Therefore , the equation for the polar surface is

-p. _

p s.grad q

= —2q ’ x2 —2q y2 —2 q z 2 —2 q ’ xy—2q yz—2q ’ zx ’—q ’ x ’—q y — q z O  ( 14 6)

By substituting twice the value of q(x ,y, z) from eq. ( 1) ,  we have

p = —2q ’(x ’ ,y, z )  + q ’ x ’ + q y  + q z  + 2q = 0 ( 14 7)

Since all point s on the limb must be on the surface , with

q ’(x ’ ,y, z )  = 0 , the above equation reduces to:

p q ’ x + q y + q z + 2 q , ( 148 )
V 7 9 0

where p = 0 is the equation of the “virtual polar plane ” . 

-5 - 
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10.14 Point Orientation

The function p (x ,y, z )  has another use besides acti ng as the equa-

tion of the polar plane. It also indicat es th e ori entation of a point
+

on the surface. If p > 0 , the angle between s and the norma l is less

than 900, and so the point is front—oriented and potentially visible .

If p < 0 , then the angle is greater than 900 and the point is back—

oriented and , therefore , invisible. Of course , if p = 0 , then the

angle is 90° , and. the point is “orthogonally” oriented and is on a

limb .

For perspective drawings the function 
~~ 

may be used in place of

p, sinc e all point s that ever need to be tested by the value of p are

on the surfac e anyway . 

- - - - 5--
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XI. HIDDEN-LINE DETERM INATION AND PICTURE ~RA~:~~

This algorithm is primarily desgined-to handle QSICs , wi~ h n~~d’~r-

line elimination a secondary consideration . The methods described here

may be considered “brute—force ” method s, but they should work well.

11.1 Preliminary Processing

Each quadric patch is considered , and, if it contains a limb within -

~~

its bounds , it is divided into two or more faces at the limb. If there

is no limb, then the patch is a single face.

Each face is tested to see whether it is a front—face or a back—

face. As Woon pointed out, [Woon 1970, p. 26), a face has the same

orientation as any point on it.

For an edge to be visible at least one of the faces adjacent to it

— must be a front—face. This algorithm does not use Loutrel ’ s complete

classification system [ Loutrel 1970) because it is dependent on whether a

s-~rf~ce intersection is obtrusive or intrusive, and a QSIC may be both.

The parameter limit strings of an edge may have to be changed. If

an e—ige is entirely the intersection of two back—faces , it will not be

~is~~ayed at al. in a hidden—line eliminated drawing . If it is the

intersectIon of two quadric patches with limbs, some of it may be the

intersection of two back—faces and be hidden, while the rest of it may

be potentially visible . The limits must be appropriately reset so that

3rliy potentially visible part s are included .

At this point , two co~unents are in order. First, limbs will now

be consi dere d to be like any other interse ct ion , with parameter limits

and coefficients.  Second , the following discussion is for orthographic

_ _
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LIrawings only. For perspective drawings, one must substitute “y/x”

for “y” and “z/x” for “z”, wherever these appear.

For each potentially visible edge , the y— and z—extrema should

be computed . (The x-extremum may also be computed.) This may be done

by tracing through an edge , looking for places where each coordinate

has an extremum . This will happen when the sign of the increment of

the coordinate changes. This method is like looking for “dips”.

For each front—face , the extrema of the extrema of the associated

edges are taken. Thus we have bot h edge extrerna , and face extrema .

11. 2 Tracing an Edge

First , for each edge one must find those front faces which may

hide all or part of the edge . This is done by using the edge extrema

and the face extrema. A face may hide an edge only if the y—extrema

and the z—extrema overlap . (If  x—extrema are calculated , the nearer

x—extremum of the face must be closer to the viewpoint than the further

x—extremum of the edge for that edge to be potentially hidden by the

fac e.

One is now ready to trace the edge , simultaneously detecting which

part s are hidden , and drawing the edge. As soon as one is sure that the

vector from one point to the next is completely unhidden (hidden), one

may draw ( skip) that vector . Thu s both hidden—line detection and edge

drawi ng occur as part s of the same process.

There are two methods of scanning an edge and they are outlined

below . Either may be used .

_ _ _ _ _  _  -—--- — -5
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The “t ight ” scan uses small vectors. As each point is scanned ,

one computes the line of sight from that point (test point ) to the

vantage point . One then computes the intersection of thi s line with the

quadric surface associated with each front face which may hide the point.

Thi s is a second—order equation , similar to eq. (37). If there are no

root s , the point is not hidden by that face. If there are two roots,

one of them corresponds to a back—face , and , since a back—fa ce cannot

hide a point , this root is discarded .

One takes the (remaining) root , and checks to see if the correspond—

ing point is within bounds for that surface patch. If it is, the point

is h~~ len if the intersection point is between the test point and the

-r~ew point . :~‘ the intersection point is out of bounds , or is further

from the view point than the test point , then the test point is tested

against the next face. If no face hides the point , then it is visible .

If one point is hidden and one of its neighbors is not, then there

is some point between them where the edge becomes hidden . By using

interval—halving, one may locate this point.

This method uses many small vectors to insure that a small hidden

(unhidden) section of the edge is not considered visible (hidden). The

disadvantage of this method is that many points have to be inspected for

each edge.

The “loose” scan uses larger vectors but needs to store a good deal

of information about each point . This is all information that would

have to be computed anyway .
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For each front face which could hide part of the edge, a list called

the “ stat e list ” is made of the values of the following functions

1) The quadratic discriminant (V = b2 — 14ac) of the second—degree

equation of the face’s surface along the line of sight , and

2) The bounding surface function ~~~~~~~~~~~~ of each bounding surface

of the patch on which the face is located , where x . , .y . ,  and z . are the

coordinates of the intersection point .

If there is a change of sign of any function in any state list, then

it is possible that, at some intermediate point , the edge becomes hidden.

One may use interval halving the locate this point . It is also helpful

to look for “dips ” in these functions.

The “loose” scan gives an effective resolution which is much better

than the vector lengt h actually used.

11.3 Vector Length

In using the “loose ” scan , one may use a variable vector length.

If and are two adjacent vectors , then ~p~xI qj = 
~Pf i~

Isin pq. By

trying to equalize l p I x I q . j one should get an optimal balance between

having fewest vectors (requiring least processing and/or storage space)

and making sure no angles are too sharp. Using this equalization , the

parts of a curve with the greatest curvature will have th e  shortest

vector s and the largest inter—vector angles, while n ear 1 y straight curves

would have long vectors and small angles. However , because of the

requirements of the algorithm in looking for sign changes and “di ps” ,

each edge should have at least two or three vectors. t might also be

good to have an upper limit on vector length. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~ --~~~~~~~~~~--5-~~~~~~-



—“ U’

— 51 — 
-

One equalizes the cross product by using a variable parameter incre— 
-

ment . Suppose we have a lower limit (L . ) and an upper limit ( L )  on the

cross product ir = j p ~x~ q~ . These may be in a ratio of 1:1.5 or 1:2.

If it falls below L , then one increases the parameter increment . IfC 1

IT rises abov e L , then the parameter increment is reduced.C U

-5- ---- -5~~~---5 — -~~~~~~- - - -  -_ _ _ _ _ _ _ _ _ _ _ _ _
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XII.  CONCLUSION

The chief advantages of thi s algorithm are ( 1) it is a complete

quadric surface algorithm , allowing use of all real quadric surface s;

(2) it allows “smooth” intersections to approximate higher—order surfaces ,

and ( 3 )  it may be fast enough to be used in conjunction with a shading

algorithm such as outlined in [Phong 1975].

Sinc e this algorithm distinguishes limb s , sharp edges , and smooth

edges, each can be appropriately handled by the shading algorithm. This

can include explicit handling of the mach band effect , specular reflec-

tion, and transparency [Metelli 19714]. 

——-~~~-~~~~~~~ 
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APPENDIX 1 - PROOF OF THEOREM

In this report it has been assumed that all QSICs lie either in

singular quadric surfaces or else in hyperbolic paraboloids. The follow-

ing is a proof of this conjecture.

DEFINITIONS

A quadric surface is positive , singular , or negative if the deter-

minant of its discriminant matrix is positive, zero , or negat ive respec-

tively. A pencil of quadric surfaces is singular iff it contains at

least one singular quadric surface, and is non—singular otherwise. A

surface intersection (QSIC ) is singular if the pencil of the two inter-

section surfaces is singular, and is non—singular if the pencil is

non—singular.

A congruence transformation is a non—singular transformation such

that the upper—left 3 x 3 submatrix of the transformation matrix (called

the rotational part) is orthogonal , and the last column of the matrix is

A scaling transformation is a non—singular transformation of the

form :
- 

a 0 0 0
0 8 0 0
O O y O
0 0 0 6  with cL,8, y, 6~~~0.

A valid transformation is the product of congruence and scaling

transformations .

Notice that valid transformations do not change the type of surface

the discriminant describes , althou gh scaling trans formations may distor t

such a surface.

_ _  _ _ _
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DEFINITION:

A PARA is a quadric surface with a singular sub—discriminant .

PARAs include all singular quadric surfaces except cones , as well as

elliptic and hyperbolic paraboloids .

LEMMA 1:

The pencil of any two quadric surfaces contains a PARA .

Proof: Suppose we have two quadri c surfaces, P and Q.

[Case 1: Either P or Q is a PARA . The hypothesis is satisfied.

[Case 2: Neither P nor Q is a PARA . The equation:

det(R ( a ) )  = det(Q —ctP ) = 0 is of the form:u ii u

—det (P )c *3 
+ K a2 — K a + det( Q ) = 0,

U 2 1 u

with K and K being the sums of the determinants of combinations of the

columns of P and Because det(P
u
) � 0 and det(Q ) ~ 0, this equation

is of third order and no less. Since a third order equation must have

at least one real root , there is at least one value of a such that

det(R(a)) = 0. This R(a) is, by definition, a PARA .

LEMMA 2:

Any pencil of a positive quadric surface and a negative quadric

surface is singular .

Proof: The equation det(R(c&)) = det(Q—ciP ) = 0 is equivalent to

det (P)&’ — K a 3 
+ K a2 - K a + det(Q) = 0, where K , K , and K are

3 2 1 3 2 1

sums of determinant s of combinations of columns of P and Q. If P is

positive and Q is negative, then det(R(O)) = det(Q) < 0; while for

-
~~ ± ~~~~, d e t (R ( a ) )  -

~~ + ~ > 0. Because R (a) is a continuous function ,

there must be at least two values of a, one positive and one negative ,

for which R ( c t ) is singular .

_ _ _ _
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LEMMA 3:

One may apply any valid transformation to any pair of quadric sur-

faces without affecting the roots of the equations: det(Q—aP) = 0 and

det ( Q
~
_8P

~
) = 0.

Proof: Suppose we have the valid transformation S and its rotational

part , S .  Both S and S are non—singular. If E = S~~ , then =

and both Su and are non—singular .

Det ( SQZ —aSPZ ) = det ( S(Q—ct P) E )  = det ( S)  det ( Q—a P) de t ( E )

= det(S)det(Z)det(Q—c&P) = det ( Q—a P ) . Similarly for Q , P ,S ,Z and 8.

LEMMA 14:

The arbitrary elliptic paraboloid P and the arbitrary quadric sur-

face Q may be expressed , in some transformed space , as:

A D 0 G 1 0 0 X

D B E H  O 1 O Y
O E C J  P 0 0 0 1

G H J K  
- 

X Y 1 O

Proof: First, let us select the axes such that the z—axis is the main

axis of the paraboloid P, the origin is located on F, and the x— and

y—ax es are the axes of the ellipse which the cross—section of P. This

puts the surfaces ’ discriminants in the form:

A D F G  S O O X
D B E  H i,,, 0 T 0 Y

F E C J  0 0 0 Z

G H J K  X Y Z O

L -5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



If S is negative , reverse the sign of every element of F ” .

Now , use the followi ng scaling transformation on bot h P ” and Q” :

/i7~~ 0 o a
O /17~ 0 0

0 0 l IZ  0

0 0 0 1

This gives us:

A D F G ‘1 0 0 X

D B E  H 0 1 0  Y

F E C J  0 0 0 1

G H J IC \ X  Y 3. 0

We now apply the following rotation (which is a congruence trans-

formation) to both F’ and Q’ :

L -M 0 0

M L 0 0 
with L

2 
+ M

2 
= 1

- :  ~~~ 
and~~~~~~~~~~~.

Using this transformation yields:

A D O G  1 0 0  X \

Q =
D B E H  O 1 O Y

O E C J  0 0 0 1

G H J K  X Y 1 O

- -_______ ~~~~~~~ --~~~ - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-— -S ~~__~~~~~~~~ 

-
~~~ 

--
- 

-— - 
~~~~~~~
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LEMMA 5-:

The pencil of two elliptic paraboloids is always singular.

Proof: Suppose we have two elliptic paraboloids P and Q, in the form

given in LEMMA 14 .  There are some conditions that are imposed on the

elements of Q, as follows :

l O O X  A D O G

O 1 0 Y D B E H
0 0 0 1  O E C J

X Y l 0 G H J K  —

det (P ) 0 such that : det (Q ) = 0,

T (P)>0 T (Q) > 0.
2 2
The two conditions for Q are:

det (Q ) = ABC — CD2 — AE2 = 0;

T (Q) A B + B C + A C _ D 2 — E 2 > 0 .

[Case 1: C=0 : det(Q ) = 0 only if A = 0 or E = 0.

[Case la: C E = 0 A D 0 G
D B O H

0 0 0 J

G H J 1 C .

Obviously, det (Q—JP ) = 0.

(Case lb : A C 0 .  0 D 0 G

D B E H

O E O J
G H J I (

Now , T (Q ) = — D2 — E2 < 0. However, one of the condit ions for Q to be

an elliptic paraboloid is that T > 0. Thus, case lb never occurs. 

----
~~~~~~

-- - - - - -5 --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~ - 5 -
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[ Case 2 : 0 ~i. For si~ o ii c ! ty ,  we nay divide every eienent in ~y C.

ThIs - o o s : e the surface.

‘A D 0 0

D B E H

0 P 1 J

G H J K

~~~~ de t ( Q ) = A3 — AE2 — 0
2 

= 0, so 0 = ±p ’A ( B — 2 ) .

I o he rea , we nust have:

> 0 (condition a)

We alsO ha~-e: T (~ ) = AB + A + B — D 2 
— 

2 > 0.
2

= AB — ~~~2
, we have :

C (~~~ ) = + — ~ 2 + A 2 (condi t ion b )
2

::cw , :nkin~ the ;encil of P and Q: (~~ ( Q—aP) ;  solving

-iet (P~ ( :~ ) = d e t ( t  —a? ) = 0 , we get :-
~~ U

— dez(? )ct3 + a2 — (A+2 — 2 ) a  + dez (~ ) = 0.
U U

since ie:(P ) = de:( ) = C , when we reject the root a = 0, we have

the r~~~ining root : a = A + 3 — E 2 . For this a , R ( a )  is a PAPA , by

:-:ase 2a: ?(a) is a singular ?ARA , then the h;--oothesis is satisf~ei.

LOase 2b : ~(a) is not a singular PAPA , it nust be a r arabo t cid ,

either e~~i~ tic or hyperbolic. We will assume that it is elliptic.

Then 
2 

> 0.

Fth t :tut :n~ the roct of a as acove , we have:

.~2 3 D o \
= ~ 

,2~~~

0 P 1 



~~ _S__ S__-_ S 
~
__

~_~~ - 5 - -- ~~~~~~~~~~~~~~~~~~~~~~~~~ 

I

t t - c : n i i o i ~ n th at  I ( P ( a ) )  > 0: (T~~:ing 0
2 = A —

2 
~~

2 A ) ( 2
3 ) +

2:2 — (A+3 )  - A3 + Al 2 > 0;

2 

= 2(= 2 p) + ~ 2 — A — B > 0; or

2 
= 

2 (-5 =2 ) + A + 3 — 
=2 < o.

~~~~ t ak inc  3 = — 
2
, the three conditions are :

A3 > 0 (condition a)

A + 3 + ~=2 = A( i+ 2 2 )  + 8 > 0 (condi t ion  b )

+ A + 3 = A + 8(1+12 ) < 0 (condition c)

(a), if 3 < 0, then A < 0; if  A < 0 , then 3 < C;

i f  3 > 0, then  A > 0; if A > 0, then 3 > 0.

ly ( b ) ,  if 3 < 0 , th en  A > 0; if A < 0, then 3 > 0.

:-r ~~~ if 3 > 0 , t h e n  A < 0; if A > 0 , then 8 < 0.

-These condition s are inconsistent ; hence R(a) cannot be an

el l ie t ic  oaraho lo i i  and nust be hyrerbolic oaraboloid. Because this is

a ren:i of ow: negative elli~tic raraboloids and a rositi-i e hyeerbc-lir

earaboloid , by ~~ -0-~A 2, the reocil and its assocoated QSIC are

The :encil of two n ega t ive  :uadric surfaces  is sincular .

Proof: u:tose we have two necative -u a d r i c  surfaces  P and ~~. ly Lenn a

1, the ~enoil contains a FAP~ . If the  ?ARA is singular , then so is the

~en cil  and the Q 3 - . If not , then  ~ne ?~~A is a ~ arahc-lcid. If the

?A?~ is a (r os i t i ve )  hyperbolic  ~ar abc-Thii , t he n the pen cil  is singular

by L~~-T~. 2 .  If there is nicre than one PAPA . then these tests nay he

:~otlied tc each of then . 

-5 --—- ~~~~~~~~ -~~~~~~~~~~ — - - 5~~ -— - -~~~~S-- ~~~~~~ -~~~ -- —- -~~~~~~~



-Otherwise , t r .-± ~~P-~ is e~~ ieoi-:  e~rabcloid. Leo us call the

• 
~~~ P , coo choose one t :.e tw~ n ega t iv e  quadric surfaces ~~. :f C.

th~ r C i i 1 O t ~~5 :a r — ~b: oid , tn~~n the p enc i l  is s ingu la r  by -TA 5.

th-~rwise , ~. most be -an ellipsoid -or a hyrerboloid of two sheets , with

det(~~~) 0.

LE~-rtA L , the di scr inir i ooo s  of ? and may be expresse d :

A D O G ’  !~~i 0 0  X \
? 

O L O Y

= C S 0 0 0 1 
/

0 - S X Y 1 0 /
of’ t he  ecu at io n :  i e t ( 3 ( a ) )  = de: (~~~—nP ) = o is:

+ 2c~ — + aet (~~~) = 0; or

— : ( A + 3 ~o-:°:a ~ [ ( ~ :_:~~ o_ ~:2 ] a (A: )

::ase .: = C . Icuatirn ~~l) OCICO a = A.

(~~~
) = (~~~ -~~P )  = B-A ~-‘ 

= o I

( ? - A ) )  = ~~~~~~~ < a.
2 —

0 = 1 = 0 , then Pans (~ (~ ) )  is at most -one.  h ose t heU

toe di::riainant cannot exceed the rank cf the sub— isicrininano by

than t v-c , Bank (?(A)) < 3, so P(A) is singular , and is the  ocuci l

:~‘ 0 -or P 0 , the n T~~~~(A ) )  < 0, so F ’ A ) )  is a hyoerhol i o

:arab:ioii , and , by ~~ -2-~A 2, the ~,EIC is singular .

[C-soc 2: -2 0. f we ncrro-alize so that -2 1, e~uno ion cAl~

a2 — (A+ ) — : 2j a  + .:— : ° —~~fl = 0- . Tcking the :uedratic form : 

-5---- - -5-~~~-- -5--- --5 --5 -5_ a4
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+ b-a + c = 0, we get the quadratic tiscrirninant : Ti = b2_i
~ac.

F;:’ this esuatior;, ~ = (A—E+E 2)2 + 102 > a .

[Case 2a: If ~~ = C , then 0 = 0 and p2 = 3 — A. There is one double

root , o = A , and Bank (3 ( A ) )  < 1, so Rank (3(A)) < 3, so y (A) ~s

singular , and so is the penci l .

[Case  2b : If ~P > 0, then there are two roots in a. Both 3(a) are

PAPA s. if soc is s ingular , the hypothesis is s a t i s f i e d .  If one is a

cositi-r e hym-erb-olic ~arabolcid , then the oenci is singu lar by LEP2~!A 2.

one is an e l lio t i c  n a r shobc id , the pencil  is s ingu lar  by LE-01A 5.

The ino ers ecc i -o rl of two quadric surfaces either is singular , lies

in a :o:~~erbo :fc taraholo-id , or both.

Proof: if one  of the surfaces is singular , the hyrothesis is satisfied .

~f one is rositive an-i cne negative , the pencil , and, therefore , the

i nt e r s ect i o n , is singular by L~~- 0 A  2. If both are negative , then the

renoil and ;s:c are singular by L~~4 - ~A ~~. f bc-tb are positive , then by

L:PDL-~ 1, the  intersection is contained in a PAPA . If the PAPA i s

negat i-re or sir ~ ula r , the intersection is singular by L~~-21A 2 , or

tireotly . itherwise , the P~J’A must be a h :rr erhol is  ~ arabc -oid.

- -~~~~~~~~-- ----~~~~~~~~~~~~~-- - -
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